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ABSTRACT With the rapid advancement of technology, IoT has become inseparable from human lives.
IoT is extensively used in transport, healthcare, and manufacturing, among other sectors. However, this
technology lacks sufficient security defense capabilities, thus becoming a highway for malicious actors. IoT
networks use infrastructure-based (INF) and device-to-device (D2D) communications to propagate data.
The INF communication utilizes technologies such as WLAN, LTE, GPRS, and GSM to relay information
from source to destination. The D2D paradigm, on the other hand, is a close-proximity communication in
which sensors exchange data in a multi-hop manner. Since malware can utilize both D2D and INF links
to spread out, IoT networks are exceptionally vulnerable to attacks. Therefore, we propose Susceptible-
Exposed-Infected-Recovered-Dead (SEIRD) model to examine the dynamics of IoTmalware spread via INF
andD2D communications.We analyze the impacts ofmobility on infection propagation and illustrate that our
model adequately captures IoT malware spread behaviors through mathematical analysis and simulations.
We also compute the malware transmission threshold, which can be used as a guideline to mitigate and
suppress an attack.

INDEX TERMS Epidemic theory, Internet of Things, IoT malware, propagation modeling.

I. INTRODUCTION
With sensing, communication, and computation capabilities,
the Internet of Things (IoT) can enable various kinds of
interactions between humans and machines and create new
applications to fulfill human needs, thereby receiving sig-
nificant attention in recent years. As shown in Fig. 1, the
IoT typically consists of IoT application servers, infrastruc-
ture edge nodes for data relaying (known as intermediate
nodes), and end-side sensors and actuators (known as IoT
devices). However, acting as a cyber-physical system, the
IoT has become a new target for adversaries since malicious
behaviors in cyberspace might result in monetary gains or
information leakage. In this case, the safety and privacy of
users who enjoy the IoT applications might be significantly
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affected, and the security issue in IoT has been an ever-
growing concern [1].

Among the existing attacks on IoT, the most infamous one
is a large-scale spread of malicious codes andmalware, where
IoT devices are infected, acted as bots, and made to perform
stealthy actions, such as overloading a service or encrypting
the whole system of a victim [2], [3]. The simple architecture
of the IoT devices with constrained resources and without a
user-friendly interface makes the propagation of the malware
more and more severe [4]. The propagation of the IoT mal-
ware is done through infrastructure-based (denoted as INF)
communication technologies like GSM/UMTS/LTE/GPRS
and WLAN through intermediate nodes. Typically, it is
achieved by performing address space scanning via Telnet or
SSH protocols [5]. Recently, proximity-based wireless media
(also known as device-to-device (D2D) communications)
are exploited by malware to spread via Wi-Fi Direct, NFC,
or BLE connections [6].
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FIGURE 1. IoT network architecture with different transmission links.

To estimate the effects of propagation and the corre-
sponding threat of the malware in IoT (e.g., outbreak),
modeling of spreading behavior is necessary. Typically,
we apply epidemic theory to model IoT malware diffu-
sion in wired and wireless networks since malware prop-
agation can be likened to the spread of pathogens in
humans [7]. In particular, Susceptible-Infectious (SI) [8],
[9], [10], Susceptible-Infectious-Susceptible (SIS) [11],
[12], [13], [14], and Susceptible-Infectious-Recovered
(SIR) [15], [16], [17] models are widely applied. Many
variants such as Susceptible–Exposed–Infected–Recovered
(SEIR) [18], [19], [20], Susceptible-Active-Dormant-
Immune (SADI) [21], and Heterogeneous-Susceptible-
Infected-Recovered-Dead (HSIRD) [22] are developed
by introducing additional states and their correspond-
ing parameters. By considering propagation via both INF
and D2D transmission links [8], [13], [17], [21], the
epidemic models become more complicated but better
suited for modeling the spreading behavior of realistic IoT
malware.

Node mobility aggravates the spread of malware by
increasing the contact rate between the infected gadgets and
the susceptible ones [10], [23]. In particular, mobility causes a
node’s neighbor to change constantly, thus increasing nodes’
contact rate. The effects of mobility on malware spread have
been studied in [17], [21], and [24]. Furthermore, in [17]
and [21], authors model malware diffusion via both D2D and
INF transmission links. However, unlike our proposedmodel,
these studies assume that the infection spread only happens
after a node has moved, thus failing to capture the spreading
behavior during the movement.

This paper explores the implications of node mobility and
dual communication schemes (INF andD2D) on IoTmalware
propagation through epidemic modeling. Specifically, our
contributions are summarized below.
• We propose a mobility-based SEIRD model to study
IoT malware spread. SEIRD model accurately captures
the dynamics of mobile IoT malware propagation by
covering the essential aspects of infection spread from
inception to recovery and death of the IoT devices
upon damage or power depletion. Unlike the traditional

SEIRD, our model considers the impacts of dual prop-
agation schemes (INF and D2D) and node mobility on
the spread of malware.

• We conduct mathematical analysis of the proposed
model, including computing the malware transmission
threshold, which can serve as a security guideline to
mitigate an attack.

• Through rigorous experimental evaluations, we validate
the effectiveness of the proposed model in capturing
realistic dynamics of IoT malware. From the results in
section V, it is evident that most propagation models
such as [13] and [19] significantly underestimate the
extent of malware diffusion by failing to consider key
IoT aspects such as mobility and the use of INF andD2D
communications.

The rest of the paper is arranged as follows: section II
reviews the related work and the background information,
while section III introduces the proposed model and the
state transition diagram. Then, in section IV, we provide
mathematical analysis, including the computation of mal-
ware transmission threshold. Next, section V presents the
simulation setup, results, and comparative analysis. Finally,
section VI states the conclusion of the study.

II. RELATED WORK
A. IoT MALWARE
The widespread adoption and development of IoT technol-
ogy raise significant security and data privacy concerns. For
instance, limitedmemory capacity, computational ability, and
battery power make it challenging to implement intensive
security defense mechanisms in IoT gadgets. As a result,
IoT networks have become highly vulnerable to attacks.
Additionally, IoT users lack the necessary knowledge regard-
ing security measures that need to be undertaken to deter
malicious actors. Therefore, there is a dire need to under-
stand IoT malware attack behaviors and spread patterns
in order to develop effective mitigation strategies to curb
them. Different malware types have varying spreading and
attacking techniques. For example, [25] studied android mal-
ware propagation behaviors and their attack methods. The
authors classified android malware based on the installation
mode, malicious behaviors, and activation method. Malware
in android gadgets is mainly spread through SMS and WIFI.
Initially, a malicious program is injected into popular appli-
cations, which are re-uploaded to the android app market for
the users to download. After gaining access to a device, the
malware obtains the remote control permissions and launches
an attack. Once in the host device, android malware can
spread through WIFI and SMS.

DDoS is the most common attack technique against IoT.
Through this method, attackers gather an army of bots and
block the target network’s services [7]. Kolias et al. [5]
investigated the formation and spread of botnets such asMirai
and Hajime. Botnets have three main parts: the command
and control (C&C) server, bots, and botmaster. The botmaster
can access the bots through SSH or Telnet [2]. Bots are
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recruited into the botnet until the botmaster meets the desired
target number. During the attack execution, the C&C server
informs the bots about the target’s IP address and the attack
mode, such as traffic attacks on HTTP or TCP. DDoS attacks
severely compromise service availability, data security, and
privacy.

B. EPIDEMIC MODELS
Epidemicmodels originated from the study of human viruses.
This modeling technique continues to be widely used to
examine the spread of pathogens [40] and is equally popular
in studying malware propagation. Epidemic models are pri-
marily derived from states such as susceptible (S), infected
(I), exposed (E), vaccinated (V), quarantined (Q), recovered
(R), and dead (D). The typical models are SIS [11], [12], [13],
[14], SI [8], [9], [10], and SIR [15], [16], [17]. As discussed
below, these traditional models, alongside other advanced
ones with many states, have been extensively used to study
the spread of malware.

Some propagation models primarily focus on the spread
of malware over long distances, usually through INF links.
For example, [9] and [26] proposed SI model for malware
propagation in large-scale networks. In [9], propagation hap-
pens mainly within groups with different infection rates, but
in [26], malware spreads across groups through the search
engine. Although individual groups have different numbers
and categories of devices, the authors in [26] assume that
the infection rate is homogeneous. In [12] and [27], the
authors propose SIS model for malware propagation. In [27],
the authors calculate immunization and infection probability
based on the Markov chain. Moreover, infection rates are
heterogeneous due to different link weights. Authors in [12]
suggest that there is a relationship between the sender and
the receiver, and thus the links between the nodes are bidi-
rectional and have the same infection rate. SIR propagation
model is studied in [15] and [25]. Wei et al. [15] considered
interest-based communities where nodes with similar inter-
ests connect. This form of connection forms multi-layered
complex networks conducive tomalware propagation. Olivier
et al. [28] applied game theory to derive Susceptible-Infected-
Resistant (SIR) model for botnet propagation. In addition
to the classic S-I states, the authors added the ‘‘resistant’’
state (R) to refer to patched and password-protected gadgets.
However, despite the gainful contribution in controlling and
suppressing botnet spread, this paper fails to consider the
impact of mobility and dual communication schemes (INF
and D2D) on the infection spread.

Yi et al. [41] used epidemic theory to develop a novel
Unacquired-Acquired-Hibernated (UAH)model for informa-
tion dissemination in the industrial IoT. The authors cat-
egorized the IoT gadgets into three compartments where
nodes are classified based on whether they have acquired/not
acquired and disseminated information and whether they
have hibernated or are active.

Le et al. [31] applied SEIQVS (Susceptible-Exposed-
Quarantined-Vaccinated-Susceptible) model to study the

spread of malware in Wi-Fi routers. The authors conducted
mathematical analysis and simulations to analyze and vali-
date their model.

In a bid to more realistically capture the behaviors of
malware propagation through INF links, more complicated
epidemic models have emerged. For example, [29] proposed
SISV model for malware spread in multiplex networks.
This model combined the features of classic SIS and SIR
models. In [19], authors suggested Susceptible-Delitescent
(Exposed)-Infected-Recovered (SD(E)IR) model, where
nodes in state E/D are not immediately infected after receiv-
ing malware; the infection occurs only when a user opens
a malicious file. The two papers consider homogeneous
infection probability, which does not reflect the effect of dif-
ferent transmission links. Guillen et al. [30] introduced SCI-
RAS (Susceptible-Carrier-Infectious-Recovered-Attacked-
Susceptible) model for studying zero-day attacks in IoT.
The various states of the model make it possible to analyze
different stages of the malware propagation process, making
the model more accurate and realistic. Using stochastic SIRS
and SEIRS models, Arash et al. [7] analyzed IoT botnet
propagation dynamics in complex networks. The authors
compared the results from the two models and concluded that
SEIRS was more suitable for modeling botnets as it reflects
their long incubation periods. Arash et al. [34] used SIRS
epidemiology model, comprising micro (initial infection)
and macro (spread) sub-models, to study the propagation of
cross-platform malware. The macro model was significantly
influenced by the contact rate via a USB connection. The
analysis of the macro model illustrated that the malware
mutation ability remarkably impacts the infection spread as
it decimates the immunity rate.

For D2D malware propagation, SIS model is proposed
in [11] and [14]. In [11], the authors studied botnet for-
mation in wireless IoT networks and discovered that node
density profoundly affects malware spread dynamics. Shen
et al. [14] used a discrete-time SIS model to study mal-
ware spread in heterogeneous WSNs. However, these stud-
ies consider the D2D link as the only channel through
which malware propagates. Liu et al. [10] proposed a mobile
SI model to study malware propagation in ad hoc wire-
less networks. The authors proposed two spread mech-
anisms, i.e., communication and diffusion modes. Zhou
et al. [35] applied the attack-defense game model (SID) to
study malware propagation in WSNs. Shen et al. [32] intro-
duced SNIRD model for malware propagation in heteroge-
neous WSNs while [24] proposed (vulnerable-compromised-
quarantined-patched-scrapped) VCQPS for malware prop-
agation in mobile heterogeneous WSNs. In [24], a ran-
dom walk model is used to depict the mobility of
the sensors. A similar heterogeneous susceptible-infected-
recovered-dead (HSIRD) model is proposed in [22] to exam-
ine malware diffusion where WSNs have different connec-
tivity capabilities. Zhang et al. [33] used the SEIRD model
to study malware diffusion in heterogeneous WSNs based on
the cellular automaton concept.
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TABLE 1. Epidemiology-based models for malware propagation.

Achar et al. [36] used a fractional derivative-based SEIRV
model to study the spread of worms in wireless sensor
networks. The authors argued that the frail defense mech-
anisms of sensors make them attractive targets for attacks.
Through mathematical analysis and simulations, the authors
discovered that node density and the sensor’s communication
capabilities significantly contribute to the dissemination of
worms in WSNs.

Jiang et al. [37] used the SIR model to study virus prop-
agation control mechanisms WSNs. The authors found out
that the average degree of nodes, the communication radius
of devices, and the probability of virus infection significantly
inhibited the control mechanism.

Yu et al., [38] proposed a SEI2RS malware dissemina-
tion model for cyber-physical systems. The authors cate-
gorized the I state into infected nodes with low infection
ability and the infection nodes with high infection ability.
The authors argued that newly infected nodes propagate
malware at a lower rate as compared to nodes infected
earlier.

Some authors focus more on malware propagation through
both INF and D2D communication links. For example, [8]
proposed SI model to simulate malware spread in generalized
social networks. In [39], the authors used six states, includ-
ing susceptible (S), latent (L), infected (I), quarantined (Q),
recovered (R), and dead (E), (SLIQRE), to analyze IoT mal-
ware dissemination. Acarali et al. [13] also considered INF
andD2D transmission links and proposed SISmodel to inves-
tigate malware spread dynamics in IoT-basedWSNs. In addi-
tion to multiple transmission links, [17], [21] incorporated
node mobility to study malware propagation in social IoT
networks. However, contrary to our proposed model, [17],
[21] assume that the infection only happens after the node
movement, thus ignoring the infection during the move-
ment. Wang et al. [21] proposed SADI (Susceptible-Active-
Dormant-Infected) to model the propagation of worms in
hierarchical social networks. In [17], the authors argue that
IoT users might have multiple devices and, thus, malware
propagation happens not only through INF and D2D but also
via self-infection by IoT users possessing more than one
gadget.

As depicted in the discussion above, only a handful of
studies in the existing literature consider mobility, INF trans-
mission, and D2D links in modeling IoT malware spread.
Furthermore, the only two papers [21] and [17] that have
employed the three aspects (mobility, INF, and D2D) have
not adequately captured the effect of mobility on the spread
of malware. Therefore, we aim to fill this gap in our proposed
mobility-based SEIRD model by incorporating D2D and
INF transmission links and correctly modeling node mobil-
ity to reflect malware spread effects during and after node
movement.

III. SYSTEM MODEL
As stated previously, the main aim of this paper is to explore
the dynamics of IoT malware propagation where mobility
and the use of dual communication schemes (INF and D2D)
are involved. IoT gadgets have a simple architecture with
constrained resources, resulting in weak defense capabilities.
Additionally, the lack of security awareness by the users
exposes IoT infrastructure to malware attacks. As highlighted
in [2], most IoT gadget users continue using the default
passwords, while others use simple and predictable pass-
words that attackers can easily bypass. Due to these reasons,
brute-force and DoS attacks have become rampant as IoT
technology advances. Therefore, in this paper, we assume that
IoT devices have security vulnerabilities due to their weak
defense capabilities and the use of weak or default passwords,
which give room for brute-force and DoS attacks. Before
presenting the proposed model in subsection III-B, we first
introduce the Gauss-Markov model, which has been used to
generate node mobility in this paper. Later, in subsections III-
C and III-D we briefly discuss D2D and INF communication
schemes, respectively.

A. GAUSS-MARKOV MOBILITY MODEL
The proposed SEIRD model utilizes the Gauss-Markov
model(GMM) as the basis of itsmobility. Usually, researchers
use GMM to simulate non-stationary machine-to-machine
networks, where machines can include sensors, computers,
or IoT gadgets [42]. GMM describes the velocity (given by
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vti ) and direction of the device at time ti (expressed as dti )
based on their corresponding values at time ti−1. GMM is
expressed as shown in (1).

vti = χvvti−1 + (1− χv)µv + χs(αv
√
1− χ2

v )

dti = χddti−1 + (1− χd )µd + χs(αd
√
1− χ2

d ), (1)

where i = 1, 2, 3, . . . and the notations χv and χd are tuning
parameters within the range of 0 and 1. χv and χd are used
to introduce a degree of randomness in the computation of
the speed and direction. If both parameters are 0, it implies
that the movement trajectory is completely random, whereas
if they are both 1, the trajectory is linear. The parameters
µv and µd denote the average speed and mean direction,
respectively. Notations αv and αd are stationary, independent,
and uncorrelated Gaussian processes with a mean of zero.
Finally, χs is a conversion parameter to model the random-
ness. To eliminate the mobility randomness, parameter χs is
set to 0, while complete randomness is modeled by setting χs
to 1. We, therefore, set this parameter to 1.

Mobility in the proposed model will affect the number of
IoT devices that can communicate directly at any given time.
The communication range is given by r , and thus, a neighbor
of the IoT device i in D2D communication is defined as any
node j that is within the communication radius of node i, i.e.,

D2DNeighbori = {j|ψ(i, j) ≤ r}, (2)

where ψ is the distance between i and j and D2DNeighbori will
change over time.

B. SEIRD MODEL
This paper employs the SEIRD model to study mobile IoT
malware’s propagation dynamics. We choose this model for
its suitability in accurately capturing the essential stages of
the infection process. As opposed to the classical SIR model,
the additional E and D states appropriately reflect the incuba-
tion period and the death of IoT devices upon power deple-
tion, respectively. The SEIRD model categorizes the popula-
tion of devices into five states: susceptible, exposed, infected,
recovered, and dead. These states are briefly explained below.

1) SUSCEPTIBLE STATE (S)
Nodes in S state have security shortcomings, are neither
infected nor patched, and are vulnerable to malware attacks.
Also, immunized devices that lose their immunity are catego-
rized as susceptible since they can get attacked again.

2) EXPOSED STATE (E)
Susceptible nodes that receive a malicious file transit to state
E . IoT devices in the exposed state contain malware that can
be activated once the user opens the malicious file. However,
since nodes in state E are already compromised, they can
propagate malware to the susceptible nodes they contact, thus
exposing them to malware. Specifically, nodes in the E state
are infected but do not depict the infection symptoms, such

FIGURE 2. SEIRD transition diagram.

as high power consumption rates and increased processing
activities.

3) INFECTED STATE (I)
IoT devices in state E transit to state I once a user opens
a malicious file. Therefore, infected gadgets can propagate
infection to other vulnerable devices in the network. In this
state, the malware is active and running in the IoT devices,
increasing the power consumption rate due to increased pro-
cessing activities.

4) RECOVERED STATE (R)
The IoT devices that are cleared of malware and equipped
with the updated antivirus software belong to the R state.
These nodes can resist and detect the malware spreading in
the network.

5) DEAD STATE (D)
Since IoT devices are battery-powered, theymay deplete their
power and transit to state D. If a device’s power runs out, it is
regarded as dead since it cannot communicate with the others
in the network.

The state transition diagram in Fig 2 illustrates how nodes
shift from one state to another during the infection process.
When nodes in the S state get exposed to malware, they
transit to state E at the rate of INFSE +D2DSE . If susceptible
nodes are patched, they shift to the R state at the rate of γ .
Furthermore, susceptible nodes may die when they deplete
their battery power and move to state D at the rate of δ.
After infection, nodes in E state shift to I class at the rate
of INFEI + D2DEI . However, if a node in the exposed state
is recovered, it transits to state R at the rate of γ . Exposed
nodes that die transit to D state at the rate of δ. Similarly,
infected nodes recover at the rate of γ or die at the rate of
δ + δex . Recovered nodes can lose immunity and become
susceptible again at the rate of λ. Nodes in the R state can
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TABLE 2. Notations and description.

also die at the rate of δRD. Damaged and irreplaceable dead
nodes are discarded from stateD at the rate of µ and replaced
at state S with the same rate of µ. The birth rate is set to
be equal to the discard rate to simulate a closed system in
which nodes eliminated from the system are actively replaced
to ensure continuity. FromFig. 2, the death rate of the infected
nodes is higher than that of other nodes because malware
activities consume more battery power causing IoT devices
to die faster.

Table 2 shows the notations used in this paper and their
descriptions. There are N IoT devices in the network, which
are divided into k groups based on node degree, i.e., G1 +

G2 + G3 + . . . ,Gk = N . In each group, the population of
S,E, I ,R, and D at any point in time add up to 1, i.e., S tk +
E tk + I

t
k + R

t
k + D

t
k = 1.

The SEIRD model can be expressed as shown in (3).

S tk = S t−1k + µ− INFSES
t−1
k − D2DSES

t−1
k

−δS t−1k − γ S t−1k + λRt−1k ,

E tk = E t−1k + INFSES
t−1
k + D2DSES

t−1
k

−INFEIE
t−1
k − D2DEIE

t−1
k − γE t−1k − δE t−1k ,

I tk = I t−1k + INFEIE
t−1
k + D2DEIE

t−1
k − γ I t−1k

−(δ + δex)I
t−1
k ,

Rtk = Rt−1k + γ (S t−1k + E t−1k + I t−1k )− δRDR
t−1
k − λRt−1k ,

Dtk = Dt−1k − µ+ δ(S t−1k + E t−1k )+ δRDR
t−1
k

+(δ + δex)I
t−1
k . (3)

C. D2D PROPAGATION
The probability of an IoT device receiving malware via D2D
transmission is given by D2DSE . Since IoT devices can be
infected along the path of movement, we define the area
covered by the moving device in any given group k as 3k
and is given by (4).

3k = πr2 + 2r · vavgtstep, (4)

where vavg is average velocity of the moving devices in group
Gk , and tstep is the time step between t and t − 1. Besides,
we consider the density of the compromised IoT devices, i.e.,
ρEI , in the total area covered by the moving devices in all the

groups (3) as shown in (5).

ρEI =
E + I
3

, (5)

where E and I are the total number of devices in exposed and
infected states, respectively, i.e.,

E =

∑
E t−1k Gk
N

,

I =

∑
I t−1k Gk
N

. (6)

To obtain the infection force due to the D2D link (D2DSE ),
we compute the product of the mobility area,3k , the density
of the infected devices, ρEI , and the scanning rate (Rs). The
resultant D2DSE is given by (7).

D2DSE = 3kρEIRs. (7)

With the increasing number of infected devices in the IoT
network, malware will quickly spread out, and after the
malware saturation point, the population of state I will start
declining. This phenomenon will effectively reduce the num-
ber of devices transiting from states E to I . We, therefore,
define the decline rate (Rd ), which we can use to obtain the
value of D2DEI .

D2DEI = (1− Rd I )PEI . (8)

D. INF PROPAGATION
For the long-distance (INF) transmission, we define social
network Snet . To determine the connectedness of the social
network, we define the adjacency matrix N × N . If Si,j = 1,
there is a connection between nodes i and j, otherwise, Si,j =
0, and i and j are not connected. INFSE is the probability that
the device receives malware through long-distance transmis-
sion. Because IoT devices in the same group, Gk , have the
same degree, they have an equal probability of contacting an
infected device, Ok (E + 1), i.e.,

Ok (E + I ) =
φkGk∑
φjGj

(E + I ), (9)

where φk is the degree of Gk . By multiplying Ok (E + I ) with
the contact rate and success rate, we obtain INFSE as

INFSE = Rc.PsucOk (E + I ). (10)

After receiving the malware file, IoT users do not open it
immediately. Therefore, the probability of a user opening a
malicious file depends on the opening rate and the number
of infected devices among friends. Since many friends might
trust that the malware file is safe, the user’s alert level might
be low. We, therefore, define the infection rate, INFEI as

INFEI = OkRoI . (11)

Due to malware activity, infected devices are more likely to
run out of power faster than uninfected ones. Therefore, the
death rate of the I state is increased by δex . The death rate
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of the recovered nodes, δRD, is determined by the number of
infected IoT devices that transit to R and δRD is given as

δRD = δ + Iγ δex . (12)

When there are many infected IoT devices, δRD approaches
δ + δex . For simulation purposes in section V, we initialize
I0k to a small value, τ , whereby 0 ≤ τ ≤ 1. The other states
are initialized as shown below.

E0
k = R0k = D0

k = 0,

S0k = 1− τ. (13)

IV. MATHEMATICAL ANALYSIS
A. EQUILIBRIUM POINTS
In malware spread modeling, two types of equilibrium points
are of interest to researchers: endemic equilibrium (EE) and
malware-free equilibrium (MFE) points. At equilibrium, the
rate of change in all states is zero, i.e.,

1S = µ− INFSES
t−1
k − D2DSES

t−1
k

−δS t−1k − γ S t−1k + λRt−1k = 0,

1E = INFSES
t−1
k + D2DSES

t−1
k − INFEIE

t−1
k

−D2DEIE
t−1
k − γE t−1k − δE t−1k = 0,

1I = INFEIE
t−1
k + D2DEIE

t−1
k − γ I t−1k

−(δ + δex)I
t−1
k = 0,

1R = γ (S t−1k + E t−1k + I t−1k )− δRDR
t−1
k − λRt−1k = 0,

1D = −µ+ δ(S t−1k + E t−1k )+ δRDR
t−1
k

+(δ + δex)I
t−1
k = 0. (14)

The endemic equilibrium point refers to the stability point at
which the number of nodes in all the states remains constant
after a certain duration, t∗, and there is malware in the
network. That is, ∀t > t∗, 1S = 1E = 1I = 1R =
1D = 0, where 1 is the rate of change from time t − 1 to t ,
and I 6= 0, E 6= 0. At this point, the malware transmission
threshold value (discussed in subsection IV-B) is greater than
one, implying that malware will persist in the network unless
intervention measures are undertaken. The EE point, denoted
as SEk ,E

E
k , I

E
k ,R

E
k ,D

E
k , can be expressed as shown below.

SEk =
µ(δδRD − δλ+ γ δRD)+ λ(µγ − δRD + δ)

(INFSE + D2DSE + δ + γ )(δδRD − δλ+ γ δRD)
,

EEk =
SEk (INFSE + D2DSE )

INFEI + D2DEI + γ + δ
,

IEk =
EEk (INFEI + D2DEI )

γ + δ + δex
,

REk =
γµ− δRD + δ

δRD(δ + γ )− δλ
,

DEk = 1− SEk − E
E
k − I

E
k − R

E
k . (15)

Different from endemic equilibrium, at MFE, the rate of
change in all the states is 0, but there is no malware in
the network. After a certain time period, t∗, the population
of the infected and exposed states will settle at zero, thus

rendering the networkmalware-free. TheMFE point, denoted
as SFk ,E

F
k , I

F
k ,R

F
k ,D

F
k , can be expressed as

∀t > t∗, (S tk ,E
t
k , I

t
k ,R

t
k ,D

t
k )= (S

F
k ,E

F
k , I

F
k ,R

F
k ,D

F
k ). (16)

After time, t∗, 1S = 1E = 1I = 1R = 1D = 0, where
1 is the rate of change from time t − 1 to t . Also, at MFE,
I = E = 0, ∀t > t∗. As shown in (17), the population of
devices in statesE, I , S,R, andD at theMFE point is given by

EFk = IFk = 0,

SFk =
µ(δ + λ)

δλ+ δγ + δ2
,

RFk =
µγ

δλ+ δλ+ δ2
,

DFk = 1− SFk − R
F
k . (17)

The MFE point is achieved when the malware spread thresh-
old value is below one, as discussed in the subsequent
subsection. Malware-free equilibrium point analysis can be
used to highlight the parameter values that need to be adjusted
to ensure that the malware dies off from the network. This
can be achieved through the computation of the malware
transmission threshold.

B. MALWARE TRANSMISSION THRESHOLD
Here, by calculating the SEIRDmalware transmission thresh-
old, σ , we provide an indicator of the effectiveness of the
current security measures. The transmission threshold plays
an important role in modeling malware propagation as it indi-
cates whether malware in the network will survive and persist
in the future or fade away after some time. To compute σ ,
we use the Next-generation matrix method (NGM) presented
in [43]. The transmission threshold, σ , is expressed as the
spectral radius (denoted as 0) of the NGM, i.e.,

σ = 0(AB−1), (18)

where A is the advent rate matrix, and B is the transition
rate matrix at MFE. Matrices A and B are generated from
infectious classes E and I . The advent rate matrix, A, com-
prises only the parameters that cause new infections, i.e., the
parameters that cause susceptible nodes to become compro-
mised. Matrix B is derived from the parameters that transmit
the infection, e.g., the parameters that make exposed nodes
transit to I state. These two matrices are shown below.

A =


∂a11
∂E t−1k

∂a11
∂E t−1k

∂a21
∂I t−1k

∂a21
∂I t−1k

 = [C1S
t−1
k C1S

t−1
k

0 0

]
(19)

B =


∂b11
∂E t−1k

∂b11
∂E t−1k

∂b21
∂I t−1k

∂b21
∂I t−1k


=

[
C2I

t−1
k + PEI + δ + γ C2E

t−1
k

−C2I
t−1
k − PEI δ + δex + γ − C2E

t−1
k

]
(20)
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To compute the malware transmission threshold, we first
compute the inverse of matrix B (B−1), which is
given by

1
|B|

[
δ + δex + γ − C2E

t−1
k −C2E

t−1
k

C2I
t−1
k − PEI C2I

t−1
k + PEI + δ + γ

]
,

(21)

where C1 =
3k
3
RsN +RcPsucOk and C2 = −RdPEI +OkRo.

Following equation (21), matrix B must be invertible, i.e.,
the determinant should not be equal to 0. Computing the
determinant of matrix, |B|, we obtain,

|B| = (δ + δex + γ )(C2I
t−1
k + PEI + δ + γ )

−C2E
t−1
k (δ + γ ), (22)

which is non-zero, and therefore matrix B is invertible.
Finally, we derive the malware transmission threshold (basic
reproduction number) as,

σ =
C1(PEI + δ + δex + γ )SFk
(PEI + δ + γ )(δ + δex + γ )

. (23)

The transmission threshold, σ , can be used as a security
guideline to determine whether the malware is likely to die
out in the future or not. For instance, when σ < 1, one
primary case infects less than one device, implying that
the malware will eventually disappear, and the IoT network
will stabilize at the malware-free equilibrium point. MFE
point implies that the current security measures are suffi-
cient for mitigating an attack. On the contrary, if σ > 1,
one index case produces more than one infection, thus
implying that the malware will remain in the network if
proper security interventions are not undertaken to reduce the
threshold value.

From equation (23), PEI , δ, and γ have the
greatest implications on the threshold value. Increasing main-
tenance frequency for IoT devices could effectively reduce
δ, and accelerating the patching rate could increase γ . For
the PEI , it is not easy to tune as it requires users’ security
awareness. To control the value of PEI , the network adminis-
trator can do some advocacy and improve the users’ knowl-
edge of attack protection strategies. Therefore, to reduce
the value of σ , network administrators need to reduce the
value of δ, increase γ rate, and improve user security
awareness.

V. SIMULATION AND RESULTS
This section illustrates that the analytical results fit the sim-
ulation findings. For the analytical illustrations, we solved
equations (3) while simulation results were achieved
through performing Monte Carlo simulations, each repeated
1000 times with varying inputs. We also used the ONE
simulator proposed in [44] to simulate the Gauss Markov
mobility model, whereby we reset the position of IoT devices
100 times and computed the average value to use in the
final simulations. The ONE simulator provides an envi-
ronment to model node movement and inter-node contacts

FIGURE 3. Fraction of IoT devices in State I under different Rc .

FIGURE 4. Fraction of IoT devices in State I under different Ro.

using different mobility models. Additionally, we analyzed
the impact of changing specific parameter values on the
malware spread rate and observed that different parameter
settings profoundly affected the simulation results. Also,
we performed experiments to illustrate the malware trans-
mission threshold, i.e, when σ > 1, and σ < 1.
Finally, we compared the proposed model with similar
existing works, and the results are reported in subsec-
tion V-B. The parameters used in this paper are recorded
in Table 3.

A. PARAMETER DISCUSSION
In most experiments, solid and dotted lines represent the
simulation and analytical results, respectively. Similarly,
we will follow this convention in our simulation illustrations.
This subsection discusses the impact of modifying different
parameter values on malware propagation.

Figs. 3 and 4 show the number of infected IoT devices,
I , under different values of Rc and Ro, respectively. Both Rc
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TABLE 3. Parameter settings:.

FIGURE 5. Fraction of IoT devices in State I under different PEI .

(contact rate) and Ro (malware file opening rate) positively
correlate with the number of infected devices in the network.
Specifically, contacting friends on social networks more fre-
quently and increasing the probability of opening a malware
file exacerbates the infection spread.

Figs. 5 and 6 illustrate the population of the infected IoT
devices under different values of PEI and Rd . Both PEI
and Rd affect the infection probability in D2D transmission.
While PEI increases the population of infected IoT devices,
Rd does not. The growth of the I state is influenced by
other parameters because Rd reduces the number of devices
that transit from state E to I . Because of the decline rate,
Rd , the I proportion is relatively lower at time t than it
was at time t − 1. Concretely, the population of infected
devices increases before gradually decreasing and finally
plateauing.

Fig. 7 demonstrates that a higher death rate, δ, δex , reduces
the fraction of the infected devices. The increased malware
activity in infected nodes depletes devices’ battery power,
thus reducing the number of nodes in the I state.
As illustrated in Fig. 8, the higher the birth rate (µ), the

smaller the proportion of the IoT devices in the D state.
However, after a certain duration, a further increase in µ
does not alter the proportion of the D state. Fig. 9 illustrates
the effect of δ, δex on the proportion of devices in D state.
A higher death rate causes more nodes to transit to state D
after power depletion.

Figs. 10 and 11 show the effect of movement speed, v,
on the population of E and I , respectively. The propor-
tion of E and I states increases with speed, but after a
certain threshold, the number of exposed nodes plateaus

FIGURE 6. Fraction of IoT devices in State I under different Rd .

FIGURE 7. Fraction of IoT devices in State I under different δ, δex .

while the number of the infected nodes decreases steadily
over time.

The effects of changing the value of the communication
range are shown in Figs. 12 and 13. The larger the radius, the
higher the infection rate since malware can reach more target
victims.

Fig. 14 illustrates the malware-free equilibrium (MFE)
point, i.e., when σ < 1. Applying equation (23), we obtain
the threshold value for MFE and as expected it is less than 1,
i.e., σ = 0.38 < 1. The rate of change in all states is
zero, and there is no malware in the network. The MFE
point implies that the current security measures are sufficient
to eliminate the malware from the network. In Fig. 15, the
malware threshold is greater than 1, i.e, σ > 1, and mal-
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FIGURE 8. Fraction of IoT devices in State D under different µ.

FIGURE 9. Fraction of IoT devices in State D under different δ, δex .

FIGURE 10. Fraction of IoT devices in State E under different speed v .

ware is present in the network since E 6= 0 and I 6= 0.
Specifically, applying equation (23), we obtain the malware

FIGURE 11. Fraction of IoT devices in State I under different speed v .

FIGURE 12. Fraction of IoT devices in State E under different radius r .

FIGURE 13. Fraction of IoT devices in State I under different radius r .

threshold in endemic equilibrium as σ = 2.5 > 1. This
value indicates that the malware will remain in the network in
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FIGURE 14. Fraction of IoT devices in each State when σ < 1.

FIGURE 15. Fraction of IoT devices in each State when σ > 1.

the future unless effective strategies are adopted to suppress
them.

B. MODEL COMPARISON AND FACEBOOK DATASET
IMPLEMENTATION
This subsection compares the performance of the proposed
work with the models presented in [13] and [19]. Fig. 16
shows the ratio of states I and S of our model and those of
models proposed in [13] and [19], under the same parameter
settings. Liu et al. [19] only consider long-distance transmis-
sion, while [13] studies both INF and D2D communications
but ignores the role of mobility in malware propagation.
From Fig. 16, the ratio of I state in [19] and [13] is not as
high as that of the proposed model. Liu et al. [19] seriously
underestimated malware propagation by failing to factor in
the role of INF in malware spread. Acarali et al. [13] also
underrated the severity of IoT malware propagation by fail-
ing to recognize the impact of mobility in the spread of
malware.

FIGURE 16. Comparison with different models.

FIGURE 17. SEIRD Model under the FB dataset.

Finally, we tested our model on a real-world dataset,
the Facebook dataset from the Stanford Network Analysis
Project (SNAP) [45]. The Facebook dataset is an undirected
graph with 4,039 nodes and 88,234 edges. The simulation
results presented in Fig. 17 demonstrate that the experimental
findings under the FB dataset match the analytical results
discussed previously.

VI. CONCLUSION
In this paper, we proposed SEIRD epidemic model to study
mobile IoT malware. In addition to mobility, we analyzed
the impacts of leveraging infrastructure-based and D2D com-
munication schemes on IoT malware spread. Our discus-
sions and analysis demonstrated that our model adequately
captures the dynamics of realistic IoT malware propaga-
tion. We conducted mathematical evaluations and computed
the malware transmission threshold, which can be used as
a security guideline in suppressing IoT malware attacks.
When the transmission threshold value is less than one,
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the malware will eventually die out even without further
interventions; otherwise, it will persist in the future. Our
analysis and simulation results revealed that mobility and the
use of both INF and D2D connections significantly aggra-
vate malware diffusion in IoT networks. However, we dis-
covered that intervention measures such as increasing IoT
user security awareness and improving the recovery rate
could substantially reduce the extent and severity of malware
spread.
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